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Abstract. We exactly solve the relativistic wave equation for vector bosons in the expanding universe
and show that the current of the vector bosons in this background is rapidly oscillating in early time.
Additionally, we derive the solutions of the Proca equation from the solutions of the Duffin–Kemmer–Petiau
(DKP) equations in the same background and obtain the massless-particle, photon, solutions by taking
the m2 → 0 limit of these solutions.
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1 Introduction

Relativisticwave equations are useful tools for investigating
the physical behaviors of particles in a curved spacetime.
In particular, it is important to consider these equations in
the expanding universe, which has considerable importance
in astrophysics and cosmology. These equations, especially
the Dirac equation, have been extensively studied in curved
spacetime for seventy years [1–6]. On the other hand, the
Duffin–Kemmer–Petiau (DKP) equation, which is a first-
order equation and represents vector bosons [7–9], is almost
as old as the Dirac equation, but has only recently begun
to be studied in a curved spacetime [10, 11], as a family
of DKP oscillator [12, 13] and some problems in nuclear
physics [14, 15]. In all of these studies, the DKP equation
has two parts: spin-0 and spin-1 particles.

Only the spin-1 sector of the DKP equation is obtained
from the quantization of a classical model of the zitterbewe-
gung, aswell as theDirac equation and the other higher-spin
wave equations [16]. The quantization procedure requires
that the wavefunction is a symmetric spinor of rank 2. The
wavefunction does not then have a spin-zero sector [17],
and the wave function in this case is also represented as
the direct product of the two Dirac spinors.

A study of pair creation in Robertson–Walker (RW)
metric was first investigated by Parker [18], and later by
Barut and Duru [19]. In our previous study, we solved the
massless spin-1, photon, wave equation in the RW metric
and showed that, as a result of conformal invariance, there is
no pair creation in this case [20]. However, the conformal
invariance is broken for the massive case. Therefore, in
the evaluation of the currents it becomes important to
understand the pair-creation process for the massive vector
bosons in this background.
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In this study, we are interested in the behavior of the
spin-1 massive particles, W± bosons, in the expanding uni-
verse. So, we find an exact solution to the DKP equation
in the spatially flat RW metric and compute the currents
of the vector bosons from the solutions. We show that the
currents are rapidly oscillating in early times and that the
vacuum is not stable. We also discuss the massless particle
limit of these equations and their solutions, first by deriv-
ing the solutions of the Proca equation from the solutions
of the DKP equation and secondly by evaluating the limit
m2 → 0.

In Sect. 2, we derive the spin-1 sector of the DKP equa-
tion in spatially flat RW spacetime. In Sect. 3, we find the
exact solutions of the DKP equation in terms of Bessel
functions, and in Sect. 4, we derive the expression of the
current for the spin-1 particles and discuss the time de-
pendence of the current. In the Conclusion, we write the
Proca equation from the DKP equation in spatially flat
RW spacetime and derive the massless-particle limit of
these equations, the DKP and the Proca equations, and
their solutions.

2 Spin-1 wave equation in RW spacetime

We start by writing the relativistic wave equation for the
spin-1 particle in a curved spacetime, which is obtained
from the quantization of the classical model of the zitter-
bewegung [16,17]. It is{
i [γµ(x) ⊗ 1 + 1 ⊗ γµ(x)]

[
∂µ − ΓDKP

µ (x)
] − 2m

}
αβ,γδ

× Ψγδ(x) = 0 , (1)

where 1
2 (γµ ⊗ 1 + 1 ⊗ γµ) are called Kemmer matrices,

βµ, and ΓDKP
µ is the spin connection for the DKP spin-1
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particle wave equation and is given by

ΓDKP
µ = Γµ(x) ⊗ 1 + 1 ⊗ Γµ(x) . (2)

In (2), Γµ(x) is the spin connection for the spin- 1
2 particles

and is given in terms of the spacetime-dependent Dirac
matrices, γµ(x), by

Γµ(x) = − 1
8

[γν(x), γν(x);µ] , (3)

where the covariant derivative is denoted by the semicolon.
In this model, the wavefunction ψαβ is the symmetric

spinor of rank 2 and is represented as the direct product
of two Dirac wavefunctions and the quantization of the
classical system requires that ψαβ should be symmetric
with respect to the indices αβ, where the first (second)
indices correspond to the first (second) set of the Dirac
matrices. For thisreason, ψαβ has 10 components and (1)
corresponds to the spin-1 sector of the DKP equation.

The spatially flat RW metric is

ds2 = dt2 − a2(t)d�x2 , (4)

where a2(t) is an expansion parameter that depends on
time. Then, the spacetime-dependent Dirac matrices in
terms of the constant Dirac matrices are

γ0(x) = γ0 , γi(x) = − 1
a
γi . (5)

Using (3) and (5), the spin connections for the spin 1
2

particle are

Γ0 = 0 , (6)

Γi =
1
2
ȧγ0γi . (7)

The wave equation for the spin-1 particle in spatially flat
RW metric is

[H − 2m · 1 ⊗ 1]



Ψ1

Ψ2

Ψ3

Ψ4


 = 0 , (8)

where Ψ1, Ψ2, Ψ3, and Ψ4 are the four component spinors
and the Hamiltonian H is

H = (9)


D −1 ⊗ �σ · i�∇
a −�σ ⊗ 1 · i�∇

a −i ȧ
aσi ⊗ σi

1 ⊗ �σ · i�∇
a 0 0 −�σ ⊗ 1 · i�∇

a

�σ ⊗ 1 · i�∇
a 0 0 −1 ⊗ �σ · i�∇

a

i ȧ
aσi ⊗ σi �σ ⊗ 1 · i�∇

a 1 ⊗ �σ · i�∇
a −D


 ,

where D is

D = 2i · 1 ⊗ 1
[(
∂t +

3ȧ
2a

)]
. (10)

In (9), the Hamiltonian is written as the direct product of
the 2×2 Pauli matrices. In a similar way, the spinors are also
denoted by two indices, and because of the quantization
condition we denote the total 10 components of the Ψ1, Ψ2,
Ψ3, and Ψ4 as

Ψ1 (�x, t) = ei�k·�x



Φ1+(t)
Φ10(t)
Φ10(t)
Φ1−(t)


 ,

Ψ3 (�x, t) = ei�k·�x



Φ2+(t)
Φ20̃(t)
Φ20(t)
Φ2−(t)


 ,

Ψ2 (�x, t) = ei�k·�x



Φ2+(t)
Φ20(t)
Φ20̃(t)
Φ2−(t)


 ,

Ψ4 (�x, t) = ei�k·�x



Φ4+(t)
Φ40(t)
Φ40(t)
Φ4−(t)


 ,

where we can separate the momentum eigenfunctions,
exp

(
i�k · �x

)
since a(t) is a function of t only.

We first obtain the following first-order equations by
adding and subtracting these equations for the momentum
eigenstates. We then find that, by choosing the momentum
in the z-direction only, �k = (0, 0, k), for simplicity, the
explicit forms of the 10 equations are

i

(
∂t + 2

ȧ

a

) 
(Φ1 − Φ4)+

(Φ1 − Φ4)0
(Φ1 − Φ4)−




+
k

a


 0

(Φ20 − Φ20̃)
0


 = m


(Φ1 + Φ4)+

(Φ1 + Φ4)0
(Φ1 + Φ4)−


 , (11)

i

(
∂t +

ȧ

a

) 
(Φ1 + Φ4)+

(Φ1 + Φ4)0
(Φ1 + Φ4)−




− k

a


 2Φ2+

0 · (Φ20 + Φ20̃)
−2Φ2−


 = m


(Φ1 − Φ4)+

(Φ1 − Φ4)0
(Φ1 − Φ4)−


 , (12)

k

a


 (Φ1 + Φ4)+

0 · (Φ1 + Φ4)0
(Φ1 + Φ4)−


 = m


 2Φ2+

(Φ20 + Φ20̃)
2Φ2−


 (13)

− k

a
(Φ1 + Φ4)0 = m (Φ20 − Φ20̃) . (14)
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In (13), we see that the (Φ20 + Φ20̃) is identically zero for the
massive particles. However, it is arbitrary for the massless
particles and we therefore identify this arbitrariness as the
gauge freedom.

We obtain the following three equations for the longi-
tudinal (zero) helicity states:

ia

(
∂t + 2

ȧ

a

)
(Φ1 − Φ4)0

−
(
ma+

k2

ma

)
(Φ1 + Φ4)0 = 0, (15)

i

(
∂t +

ȧ

a

)
(Φ1 + Φ4)0

−m (Φ1 − Φ4)0 = 0, (16)

(Φ20 − Φ20̃) = − k

ma
(Φ1 + Φ4)0 . (17)

The remaining six equations are

i

(
∂t + 2

ȧ

a

)
(Φ1 − Φ4)± = m (Φ1 + Φ4)± , (18)

ia

(
∂t +

ȧ

a

)
(Φ1 + Φ4)±

−
(
ma+

k2

ma

)
(Φ1 − Φ4)± = 0, (19)

k (Φ1 − Φ4)± = ma (2Φ2±) . (20)

These are the wave equations for the transverse, ±1-heli-
city states.

3 The solutions

If we consider these equations in the expanding universe,
a(t) = a0 exp(Ht), where H is the Hubble constant and
−∞ < t < ∞, then the equation for the zero-helicity
state becomes[(

∂t +
3H
2

)2

− H2

4
+

4k2

a2
0
e−2Ht + 4m2

]
(Φ1 + Φ4)0

= 0 . (21)

The solution of (21) is

(Φ1 + Φ4)0 = N0z
3
2 Jiν(z) , (22)

where z and ν are

z =
2k
a0H

e−Ht ,

ν = ±
(

4m2

H2 − 1
4

)1/2

.

The remaining components of the zero-helicity state are
derived by considering the derivatives of the Bessel func-
tions:

(Φ1 − Φ4)0 = −iH N0

m
z

3
2

[(
1
2

− iν

)
Jiν(z) + zJiν−1(z)

]
(23)

and

(Φ20 − Φ20̃) = − kN0

ma0
z

5
2 Jiν(z) . (24)

We also obtain the same equations for the ±1-helicity states
in the background:[(

∂t +
3H
2

)2

− H2

4
+

4k2

a2
0
e−2Ht + 4m2

]
(Φ1 − Φ4)±

= 0 . (25)

In a similar way, the solutions are

(Φ1 − Φ4)± = N±z
3
2 Jiν(z) . (26)

The remaining components of the ±1-helicity states are
derived by considering the derivatives of the Bessel func-
tions:

(2Φ2±) =
kN±
ma0

z
5
2 Jiν(z), (27)

(Φ1 + Φ4)± =
iHN±
m

z
3
2

[(
1
2

+ iν

)
Jiν(z) − zJiν−1(z)

]
,

(28)

and finally for m �= 0

(Φ20 + Φ20̃) = 0 . (29)

Using (21), (22), (24), (25), (26), and (27), we obtain all
of the components of the general wavefunction, Ψ .

4 The current

To discuss the spin-1 particle creation, it is useful to con-
sider the current. Therefore, using the (1) and its conjugate,
we find

∂µΨ (γµ ⊗ 1 + 1 ⊗ γµ)Ψ = 0 , (30)

where, to introduce the conjugate of the DKP equation,
we define the conjugate of the ΓDKP

µ , γµ ⊗ 1 + 1 ⊗ γµ,
and ψ:

(γµ ⊗ 1 + 1 ⊗ γµ)† = γ0 ⊗ γ0[(γµ ⊗ 1 + 1 ⊗ γµ)∗]Tγ0 ⊗ γ0

= γµ ⊗ 1 + 1 ⊗ γµ ,

(Γµ ⊗ 1 + 1 ⊗Γµ)† = γ0 [
(Γµ)∗]T

γ0

= −(Γµ ⊗ 1 + 1 ⊗ Γµ) ,

[(Ψ)∗]T γ0 ⊗ γ0 = Ψ ,
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respectively. Here ∗ denotes the complex conjugation. Then
we find the conserved current from (30) as

jµ =
1
2
Ψ [γµ(x) ⊗ 1 + 1 ⊗ γµ(x)]Ψ . (31)

Then we evaluate the components of the current:

j0 � 2H
πm

|N |2 z3 sinh νπ, (32)

j3 � H |N |2
ma0π

z4 [sin 2z + cosh νπ] , (33)

and the rest of the components are zero because we choose
�k = (0, 0, k). In (33), j3 is oscillating as a function of the
time t. Thus, there are rapid oscillations in the current and
these indicate the instabilities in the vacuum.

We determine the normalization constants, N±,0 in
the asymptotic expressions of the solutions of the DKP
equations in the background, i.e. in the flat-space limit, it
gives the usual δ

(
�k − �k′

)
normalization. The norm of ψ

is defined as

(
ψ�k′ , ψ�k

)
=

∫
d3xa3(t)

(
ψ�k′

)∗T
ψ�k .

Then we find the normalization constants

N±,0 =

[(
H

2πk

)3 (
1 +

H2

4m2

)
πν

2 sinhπν

]− 1
2

. (34)

5 Conclusion

In this study we solved the spin-1 wave equation in the
expanding universe and obtained the six sets of solutions
which correspond to the positive and negative energy, and
the three polarization states. We also derived the expression
of the current and showed that j3 is time-dependent and
it has rapid oscillations at t → −∞, in the early period of
inflation. Thus there is spin-1 particle creation, as in the
spin-1/2 particle case [21]. The current, jµ, is conserved,
because (γµ ⊗ 1 + 1 ⊗ γµ);µ = 0 in the RW metric.

We also want to discuss the relevance between the so-
lutions of the massive DKP and the Proca equations with
complex components in the same background, as we dis-
cussed the relevance between the simplified or massless
version of the DKP equation and the Maxwell equations.
We identify A0 from (29) as

A0 =
(Φ20 + Φ20̃)

m
= 0 ,

We therefore reorganize (15), (16), and (17) as

∂t
ia (Φ1 + Φ4)0

m
= a (Φ1 − Φ4)0

= F0‖ , (35)

F0‖ = −a2F 0‖ ,

−a2 (Φ20 − Φ20̃) = ∂z
ia (Φ1 + Φ4)0

m

= F3‖ , (36)

F3‖ = a4F 3‖ ,

a−3
[
∂t

(
−a3F 0‖

)
+ ∂z

(
−a3F 3‖

)]
= m2(−a−2) (37)

× ia (Φ1 + Φ4)0
m

,

a−3
[
∂t

(
−a3F 0‖

)
+ ∂z

(
−a3F 3‖

)]
= m2A‖ , (38)

ia (Φ1 + Φ4)0
m

= A‖

= −a−2A‖ , (39)

whereA‖ is the longitudinal component ofAµ with Sz = 0.
In terms of the covariant derivatives (38) is

∇0F
0‖ + ∇3F

3‖ = m2A‖ , (40)

where

A‖ =
ia (Φ1 + Φ4)0

m

=
2k
H

iN0z
1
2 Jiν(z)
m

,

F 0‖ = (Φ1 − Φ4)0

= −iH N0

m
z

3
2

[(
1
2

− iν

)
Jiν(z) + zJiν−1(z)

]
,

F 3‖ = − (Φ20 − Φ20̃)

=
kN0

ma0
z

5
2 Jiν(z) . (41)

We also reorganize the remaining six equations as(
∂t + 2

ȧ

a

)
i (Φ1 − Φ4)±

m
= (Φ1 + Φ4)±

= F 0± , (42)

∇3

a

i (Φ1 − Φ4)±
m

= − (2Φ2±)

= F 3± , (43)

∇0F
0± + ∇3F

3± = m2 i (Φ1 − Φ4)±
m

, (44)

where we identify
i(Φ1−Φ4)±

m as theA±. They are the space-
like orthogonal components of Aµ with Sz = ±1. The
solutions are

A±] =
i (Φ1 − Φ4)±

m

=
iN±
m

z
3
2 Jiν(z) ,
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F 0± = (Φ1 + Φ4)±

=
iHN±
m

z
3
2

[(
1
2

+ iν

)
Jiν(z) − zJiν−1(z)

]
,

F 3± = − (2Φ2±)

= − kN±
ma0

z
5
2 Jiν(z) .

We see that these solutions are complex functions of their
variables. There are no prescriptions for the normalizations
of the solutions of the Proca equation. These solutions
are normalized in a similar way to the DKP equation by
normalizing (F, F ) + (mA,mA).

When m2 → 0 in (33), the normalization constants
become

N±,0 �
(

2m
H

) [(
H

2πk

)3 2 sinhπν
πν

] 1
2

,

In this limit, using the solutions of the Proca equations, we
derive the three linearly independent potential functions as

−iA‖ =
(Φ1 + Φ4)0

m

=

[(
1
πk

)3 2H
π

] 1
2

z
3
2 J1/2(z) ,

−iA± =
(Φ1 − Φ4)±

m

=

[(
1
πk

)3 2H
π

] 1
2

z
3
2 J1/2(z) ,

and the corresponding field strengths for these potential
functions as

F 0‖ = F 0± =

[(
H

πk

)3 2
π

] 1
2

z
5
2 J−1/2(z) ,

F 3‖ = F 3± = i
k

Ha0

[(
H

πk

)3 2
π

] 1
2

z
5
2 J1/2(z) .

These solutions are normalized in a similar way to the DKP
equation by only normalizing (F, F ) without considering
the (A,A) terms. They are purely real or imaginary.

In (13), (Φ20 + Φ20̃) is an arbitrary function for the
massless particles and we identify this property as the gauge
freedom for the massless particle.

The expression of the field strength tensor are the same
as our previous results in [20], where we express these
solutions in terms of the conformal time, dτ = dt/a(t).
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